Как работает тепловой насос для отопления дома. Схема и технология работы теплового насоса Тепловые насосы для отопления принцип действия

Тепловой насос представляет собой парокомпрессионную установку, которая переносит тепло от холодных, низкопотенциальных источников тепла к горячим, высокопотенциальным. Тепло передается за счет конденсации и испарения хладагента, в качестве которого чаще всего используется фреон, циркулирующий по замкнутому контуру. Электроэнергия, от которой работает тепловой насос, тратится только на эту принудительную циркуляцию.

Принцип работы теплового насоса основан на так называемом цикле Карно, который прекрасно знаком вам по работе холодильных установок. На самом деле, бытовой холодильник, стоящий на вашей кухне, также является тепловым насосом. Когда вы помещаете в него продукты, пусть даже холодные, но температура которых все-таки выше, чем температура в камере холодильника, по закону сохранения энергии выделяемое ими тепло никуда не девается. Поскольку температура внутри повышаться не должна, тепло выводится наружу через решетку радиатора, нагревая воздух в кухне. Чем больше продуктов вы поместите одновременно в холодильник, тем больше будет теплоотдача.

Простейшим вариантом теплового насоса станет открытый холодильник, помещенный на улице, радиатор которого находится в комнате. Но пусть холодильник исполняет свои прямые обязанности, ведь уже существуют специальные устройства - тепловые насосы, имеющие кпд гораздо выше. Принцип их действия достаточно прост.

Как работает тепловой насос

Любой теплонасос состоит из испарителя, конденсатора, расширителя, понижающего давление, и компрессора, который давление повышает. Все эти устройства соединены в один замкнутый контур трубопроводом. По трубам циркулирует хладагент, инертный газ с очень низкой температурой кипения, поэтому в одной части контура, холодной, он представляет собой жидкость, а во второй, теплой, он переходит в газообразное состояние. Точка кипения, как известно из физики, может меняться в зависимости от давления, вот в этой системе расширитель и компрессор.

Предположим, что снаружи теплоноситель циркулирует по трубам, уложенным в земле, поскольку он имеет низкую температуру, то проходя по ним, он нагревается, даже когда внешняя температура составляет всего около 4-5оС. Поступая в испаритель, который выполняет функцию теплообменника, теплоноситель отдает полученное тепло во внутренний контур системы, который заполнен хладагентом. Даже этого тепла достаточно, чтобы хладагент перешел из жидкого в газообразное состояние.

Двигаясь дальше, газ перемещается в компрессор, где под действием высокого давления сжимается, а его температура при этом повышается. Став горячим, газ поступает в конденсатор, который также является теплообменником. В нем происходит передача тепла от горячего газа к теплоносителю обратного трубопровода, входящего в отопительную систему дома. Отдав тепло, газ охлаждается и снова переходит в жидкое состояние, в то время, как нагретый теплоноситель поступает в систему горячего водоснабжения и отопления. Проходя через редукционный клапан расширителя, сжиженный газ снова попадает в испаритель – цикл замыкается.

В холодное время года тепловые насосы работают на обогрев дома, а в жару – на его охлаждение. В этом случае принцип работы тот же, только летом тепло в теплоноситель поступает из внутренних помещений, а не снаружи.

Конструктивные особенности тепловых насосов

В настоящее время используются тепловые насосы, имеющие разные конструкции. Так, насос с открытым циклом применяют, когда дом расположен рядом с водоемом. В этом случае теплоноситель, вода, поступает в открытый контур, проходит весь цикл и, охлаждаясь, вновь сливается в водоем.

Геотермальные насосы закрытого типа прокачивают теплоноситель – воздух или воду, по трубам, заложенным глубоко в землю и проложенным по дну водоема. Закрытый цикл в экологическом плане считается более безопасным. К закрытому типу относятся насосы с вертикальным и горизонтальным теплообменником, которые используются, когда поблизости нет водоемов. Вертикальные тепловые насосы применяются, когда площадь земельного участка, на котором расположен дом, невелика. Иногда вертикальные насосы устанавливают в пробуренных поблизости скважинах.

В комплекс работ по установке теплового насоса входит проведение внутренних электромонтажных работ, прокладка внешнего трубопровода и внутренних воздуховодов.

Преимущества использования тепловых насосов

Экономическая от использования тепловых насосов очевидна – их эксплуатация достаточно дешево обходится, поскольку электроэнергии тратится чуть больше, чем при работе холодильника. Цена оборудования также невысока, так же, как и стоимость монтажа и установки. Использование теплового насоса, позволяет избавиться от забот о приобретении и хранении топливных ресурсов, установке и эксплуатации отопительного оборудования, у вас в доме освобождаются дополнительные помещения, в которых раньше располагалась котельная.

План статьи

Тепловой насос – это устройство, которое нагревает воду систем отопления и горячего водоснабжения, сжимая фреон, изначально подогретый от источника низкопотенциального тепла, компрессором до 28 бар. Подвергаясь высокому давлению, газообразный теплоноситель с изначальной температурой 5-10 °С; выделяет большое количество тепла. Что позволяет прогреть теплоноситель системы потребления до 50-60 °С, без применения традиционных видов топлива. Поэтому считается, что тепловой насос обеспечивает пользователя самым дешёвым теплом.

Подробнее о достоинствах и недостатках смотрите видео:

Подобное оборудование уже более 40 лет эксплуатируется в Швеции, Дании, Финляндии и других странах, на государственном уровне поддерживающих развитие альтернативной энергетики. Не так активно, но увереннее с каждым годом, тепловые насосы выходят на российский рынок.

Цель статьи: сделать обзор популярных моделей тепловых насосов. Информация будет полезна тому, кто стремится максимально сэкономить на отоплении и горячем водоснабжении собственного дома.

Тепловой насос обогревает дом бесплатной энергией природы

В теории, отбор тепла возможен из воздуха, грунта, грунтовых вод, сточных вод (в том числе из септика и КНС), открытыъ водоёмов. На практике – для большинства случаев доказана целесообразность использования оборудования, забирающего тепловую энергию из воздуха и грунта.

Варианты с отбором тепла от септика или канализационной насосной станции (КНС) – самые заманчивые. Прогоняя через ТН теплоноситель с 15-20 °С, на выходе можно получить не менее 70 °С. Но приемлем этот вариант только для системы горячего водоснабжения. Отопительный контур снижает температуру в «заманчивом» источнике. Что ведёт к ряду неприятных последствий. Например, обмерзанию стоков; а если теплообменный контур теплового насоса размещён на стенках отстойника, то и самого септика.

Самые популярные ТН под потребности СО и ГВС – геотермальные (использующие тепло земли) устройства. Они выделяются наилучшими эксплуатационными показателями в условиях тёплого и холодного климата, в песчаном и глинистом грунте с разным уровнем грунтовых вод. Потому что температура грунта ниже глубины промерзания почти не изменяется на протяжении всего года.

Принцип действия теплового насоса

Теплоноситель нагревается от источника низкопотенциального (5…10 °С) тепла. Насос сжимает хладагент, температура которого при этом повышается (50…60 °С) и нагревает теплоноситель системы отопления или ГВС.

В процессе работы ТН задействованы три тепловых контура:

  • наружный (система с теплоносителем и циркуляционным насосом);
  • промежуточный (теплообменник, компрессор, конденсатор, испаритель, дроссельный клапан);
  • контур потребителя (циркуляционный насос, тёплый пол, радиаторы; у ГВС – бак, точки водоразбора).

Сам процесс выглядит следующим образом:


Контур съёма тепловой энергии

  1. Грунт нагревает солевой раствор.
  2. Циркуляционный насос поднимает рассол в теплообменник.
  3. Раствор охлаждается хладагентом (фреоном) и возвращается в грунт.

Теплообменник

  1. Жидкий фреон, испаряясь, забирает тепловую энергию у рассола.
  2. Компрессор сжимает хладагент, его температура резко повышается.
  3. В конденсаторе фреон через испаритель отдаёт энергию теплоносителю отопительного контура и снова становится жидким.
  4. Остывший хладагент, через дроссельный клапан уходит к первому теплообменнику.

Отопительный контур

  1. Подогретый теплоноситель отопительной системы подтягивается циркуляционным насосом к рассеивающим элементам.
  2. Отдаёт тепловую энергию воздушной массе помещения.
  3. Остывший теплоноситель по обратной трубе возвращается к промежуточному теплообменнику.

Видео с подробным описанием процесса:

Что дешевле для отопления: электричество, газ или тепловой насос?

Приведем затраты на подключение каждого из типа отопления. Для представления общей картины возьмем Московскую область. В регионах цены могут отличаться, но соотношение цен останется прежним. В расчетах принимаем, что участок «голый» — без проведеного газа и электричества.

Затраты на подключение

Тепловой насос. Укладка горизонтального контура по ценам МО – 10 000 рублей за смену экскаватора с кубовым ковшом (выбирает до 1 000 м³ грунта за 8 часов). Система для дома в 100 м² будет закопана за 2 дня (справедливо для суглинка, на котором можно снять до 30 Вт тепловой энергии с 1 м.п. контура). Порядка 5 000 рублей потребуется для подготовки контура к работе. В итоге, горизонтальный вариант размещения первичного контура обойдётся в 25 000.

Скважина выйдет дороже (1 000 рублей за погонный метр, с учётом монтажа зондов, обвязки их в одну магистраль, заправкой теплоносителем и опрессовкой.), но значительно выгоднее для будущей эксплуатации. При меньшей занятой площади участка возрастает отдача (для скважины 50 м – минимум 50 Вт с метра). Покрываются потребности насоса, появляется дополнительный потенциал. Поэтому вся система будет работать не на износ, а с некоторым запасом мощности. Разместить 350 метров контура в вертикальных скважинах – 350 000 рублей.

Газовый котёл. В Московской области за подключение к газовой сети, работы на участке и монтаж котла «Мособлгаз» запрашивает от 260 000 рублей.

Электрический котел. Подключение трёхфазной сети обойдётся в 10 000 рублей: 550 – местным электросетям, остальное – на распределительный щит, счётчик и прочее наполнение.

Потребление

Для работы ТН с тепловой мощностью 9 кВт требуется 2.7 кВт/ч электроэнергии – 9 руб. 53 коп. в час,

Удельная теплота при сгорании 1 м³ газа – те же 9 кВт. Бытовой газ для МО выставлен по 5 руб. 14 коп. за куб.

Электрокотёл потребляет 9 кВт/ч = 31 руб. 77 коп. в час. Разница с ТН – почти в 3,5 раза.

Эксплуатация

  • Если подведён газ, то наиболее рентабельный вариант для отопления – газовый котёл. Стоит оборудование (9 кВт) минимум 26 000 рублей, месячная оплата за газ (по 12 ч/сутки) составит 1 850 рублей.
  • Мощное электрооборудование выгоднее с точки зрения организации трёхфазной сети и приобретения самого оборудования (котлы – от 10 000 рублей). Тёплый дом будет стоить 11 437 рублей за месяц.
  • С учётом первоначальных вложений в альтернативное отопление (оборудование 275 000 и монтаж горизонтального контура 25 000), ТН, расходующий электричества на 3 430 руб/месяц, окупится не ранее чем через 3 года.

Сравнивая все варианты отопления, при условии создания системы «с нуля», становится очевидным: газ будет не намного выгоднее геотермального теплонасоса, а обогрев электричеством в перспективе 3 лет безнадёжно проигрывает обоим этим вариантам.

С подробными расчётами в пользу эксплуатации теплового насоса можно ознакомиться, просмотрев видео от производителя:

Некоторые дополнения и опыт эффективной эксплуатации освещены в этом ролике:

Основные характеристики

При выборе оборудования из всего многообразия характеристик обратите внимание на следующие характеристики.

Основные характеристики тепловых насосов
Характеристики Диапазон значений Особенности
Тепловая мощность, кВт До 8 Помещения площадью не более 80 – 100 м², при высоте потолка не более 3 м.
8-25 Для одноуровневых дачных домов с потолком 2.5м, площадью от 50 м²; коттеджей для ПМЖ, до 260 м².
Свыше 25 Целесообразно рассматривать для 2-3 уровневых жилых домов с потолками 2.7м; промышленных объектов – не более 150 м², при высоте потолка в 3 и более.
Потребляемая мощность основного оборудования (предельное потребление вспомогательных элементов) кВт/ч От 2 (от 6) Характеризует энергопотребление компрессора и циркуляционных насосов (тэна).
Схема работы Воздух-воздух Трансформированная тепловая энергия воздуха передаётся в помещение потоком прогретого воздуха через сплит-систему.
Воздух — вода Энергия, снятая с пропущенного через прибор воздуха, передаётся теплоносителю жидкостной отопительной системы.
Рассол-вода Передачу тепловой энергии от возобновляемого источника выполняет натриевый или кальциевый раствор.
Вода-вода По магистрали открытого первичного контура грунтовые воды несут тепловую энергию прямо к теплообменнику.
Температура теплоносителя на выходе, °С 55-70 Показатель важен для расчёта потерь на длинном отопительном контуре и при организации дополнительной системы горячего теплоснабжения.
Сетевое напряжение, V 220, 380 Однофазные – потребляемая мощность не более 5.5 кВт, только для стабильной (малонагруженной) бытовой сети; самые дешёвые – только через стабилизатор. Если есть сеть 380 V, то трёхфазные приборы предпочтительнее – больший диапазон мощностей, меньше вероятность «просадить» сеть.

Сводная таблица моделей

В статье мы рассмотрели наиболее популярные модели, выявили их сильные и слабые стороны. С перечнем моделей можете ознакомиться в следующей таблице:

Сводная таблица моделей
Модель (страна производитель) Особенности Цена, руб.

Тепловые насосы для отопления небольших помещений или под ГВС

1. Система «воздух-вода»; работает от однофазной сети; выступающая конденсационная линия вставляется в бак с водой. 184 493
2. «Рассол-вода»; питание от трёхфазной сети; вариативное управление мощностью; возможность подключения дополнительного оборудования – рекуператора, разнотемпературного оборудования. 355 161
3. Тепловой насос типа «воздух – вода» с питанием от сети 220V и функцией защиты от замерзания. 524 640
Оборудование для отопительных систем коттеджей под ПМЖ
4. Схема «вода – вода». Для того чтобы ТН мог выдавать стабильные 62 °С теплоносителя в системе отопления, возможности комплекта из компрессора и насосов (1.5 кВт) дополняет электронагреватель мощностью в 6 кВт. 408 219
5. На базе схемы «воздух-вода», в одном приборе, состоящим из двух блоков, реализованы потенциалы охладительного и нагревательного устройств. 275 000
6. «рассол-вода», прибор прогревает теплоноситель для радиаторов до 60 °С, может использоваться при организации каскадных систем отопления. 323 300
7. В одном корпусе с геотермальным насосом размещён накопительный бак для системы горячего водоснабжения, на 180 литров теплоносителя 1 607 830
Мощные тепловые насосы для нужд систем отопления и горячего водоснабжения
8. Возможен отбор тепла от грунта и грунтовых вод; возможны эксплуатация в составе каскадных систем и удалённое управление; работает от трёхфазной сети. 708 521
9. «рассол-вода»; управление мощностью компрессора и частотой вращения циркуляционных насосов осуществляется посредством частотной регулировки; дополнительный теплообменник; сеть – 380 V. 1 180 453
10. схема работы «вода-вода»; встроенные насосы первичного и вторичного контура; предусмотрена возможность подключения гелиосистем. 630 125

Тепловые насосы для отопления небольших помещений или под ГВС

Предназначение – экономичное отопление жилых и вспомогательных помещений, обслуживание системы горячего водоснабжения. Самым низким потреблением (до 2 кВт) выделяются однофазные модели. Для защиты от скачков напряжения в сети им нужен стабилизатор. Надёжность трёхфазных, объясняется особенностями сети (нагрузка распределяется равномерно) и присутствием собственных защитных цепей, предотвращающих повреждение устройства при перепадах напряжения. Оборудование этой категории не всегда справляется с одновременным обслуживанием системы отопления и контура горячего водоснабжения.

1. Huch EnTEC VARIO КНР S2-E (Германия) – от 184 493 руб.

Huch EnTEC VARIO самостоятельно не эксплуатируется. Только в связке с накопительным баком системы горячего водоснабжения. ТН подогревает воду для санитарных нужд, охлаждая воздух в помещении.


Из преимуществ – небольшое энергопотребление прибора, приемлемая температура воды в контуре ГВС и функция очистки системы (периодическим кратковременным нагреванием до 60 °С) от патогенных бактерий, развивающихся во влажной среде.

Минусы в том, что прокладки, фланцы и манжету, надо докупать отдельно. Обязательно оригинальные, иначе будут потёки.

При расчёте необходимо помнить, что устройство прокачивает 500 м³ воздуха в час, поэтому минимальная площадь помещения, в котором установлен Huch EnTEC VARIO, должна быть не менее 20 м², при высоте потолка в 3 и более метра.

2. NIBE F1155-6 EXP (Швеция) – от 355 161 руб.

Модель заявлена, как «интеллектуальное» оборудование, с автоматической настройкой под потребности объекта. Внедрена инверторная схема питания компрессора – появилась возможность настраивать выходную мощность.



Присутствие такой функции при малом числе потребителей (точки водоразбора, радиаторы отопления), делает отопление небольшого дома более выгодным, чем в случае с обычным, неинверторным ТН (у которых нет плавного пуска компрессора и выходная мощность не регулируется). Потому что у NIBE, при малых значениях мощности, тэны включаются редко, а собственное максимальное потребление теплового насоса – не более 2 кВт.

В условиях небольшого объекта шум (47 ДБ) не приемлем. Оптимальный вариант установки – отдельное помещение. Обвязку размещать на стенах не примыкающим к комнатам для отдыха.

3. Fujitsu WSYA100DD6 (Япония) – от 524 640 руб.

«Из коробки» работает только на нагрев в одном контуре. Опционально предлагается комплект для подключения второго контура, с возможностью независимой настройки для каждого. Но сам тепловой насос рассчитан на систему отопления помещения до 100 м², с высотой потолка не более 3 метров.


В списке преимуществ – небольшие габариты, работа от бытовой электросети, регулировка температуры на выходе 8…55 °С, что по замыслу производителя должно было как-то повлиять на комфорт и точность управления подключенными системами.

Но всё перечеркнула низкая мощность. В нашем климате, отапливая заявленные 100 м², устройство будет работать на износ. Что подтверждают частые переходы устройства в «аварийный» режим, с отключением помпы и ошибками на дисплее. Случай не гарантийный. Исправляется перезапуском оборудования.

«Аварии» влияют на расход электроэнергии. Потому что когда умолкает компрессор, в работу включается тэн. Поэтому совместное подключение контуров СО и тёплого пола (или ГВС) допустимо на объекте площадью не более 70 м².

Оборудование для отопительных систем типовых коттеджей под ПМЖ

Здесь представлены геотермальные, воздушные и водяные (снимающие тепловую энергию с грунтовых вод) устройства. Заявленной выходной мощности (не менее 8 кВт) достаточно чтобы обеспечить теплом все потребительские системы дачных (и ПМЖ) домов. У многих тепловых насосов этой категории есть режим охлаждения. Внедрённые инверторные схемы питания отвечают за плавный пуск компрессора, из-за его плавной работы снижается дельта (разница температур) теплоносителя. Выдерживается оптимальный режим работы контура (без лишних перегревов и выхолаживаний). Что позволяет снизить расход электроэнергии во всех режимах работы ТН. Наибольший экономический эффект – в устройствах «воздух-воздух».

4. Vaillant geoTHERM VWW 61/3 (Германия) – от 408 219 руб.

Использование воды из скважины в качестве теплоносителя первого контура (только VWW) позволило упростить конструкцию и снизить цену ТН без потери в производительности.


Устройство отличается малым энергопотреблением в основном режиме работы и низким уровнем шума.

Минус Vaillant – требовательность к воде (известные случаи повреждения подающей магистрали и теплообменника соединениями железа и марганца); следует исключить работу с солесодержащими водами. Ситуация не гарантийная, но если монтаж выполняли специалисты сервисного центра, то есть кому выставлять претензии.

Необходимо сухое, непромерзаемое помещение, объёмом не менее 6.1 м³ (2.44 м² при потолке 2.5 м). Каплеобразование под насосом – не брак (допускается стекание конденсата с поверхностей заизолированных контуров).

5. LG Therma V AH-W096A0 (Корея) – от 275 000 руб.

Тепловой насос системы «воздух-вода». Прибор составляют 2 модуля: наружный забирает тепловую энергию у воздушных масс, внутренний трансформирует и передаёт её системе отопления.


Главный плюс – универсальность. Можно настроить, как для обогрева, так и для охлаждения объекта.

Недостаток этой серии LG Therma в том, что его (и всей линейки) потенциала, не хватит для нужд коттеджа, площадью более 200 м².

Важный момент: рабочие блоки двухкомпонентной системы нельзя разносить более чем на 50 м в горизонтальной плоскости и на 30 м по вертикали.

6. STIEBEL ELTRON WPF 10MS (Германия) – от 323 300 руб.

Модель WPF 10MS – самая мощная из тепловых насосов STIEBEL ELTRON.


Среди преимуществ – автоматически подстраиваемый режим отопления и возможность соединения 6 устройств в каскадную (это параллельное или последовательное подключение приборов с целью увеличения расхода, напора или организации аварийного резерва) систему, мощностью до 60 кВт.

Минус в том, что организация мощной электросети, для одновременного подключения 6 таких приборов, возможна только с разрешения местного подразделения Ростехнадзора.

Есть особенность в установке режимов: после внесения необходимых корректировок в программу, следует подождать, пока погаснет контрольная лампа. Иначе, после закрывания крышки система вернётся к исходным настройкам.

7. Daikin EGSQH10S18A9W (Япония) – от 1 607 830 руб.

Мощное устройство для одновременного обеспечения теплом СО, ГВС и тёплого пола жилого дома, площадью до 130 м².

Программируемые и управляемые пользователем режимы; в рамках заданных параметров контролируются все обслуживаемые контуры; есть встроенный накопитель (для нужд ГВС) на 180 литров и вспомогательные нагреватели.

Из недостатков – внушительный потенциал, который не будет полностью задействован в доме 130 м²; цена, из-за которой период окупаемости растягивается на неопределённый срок; не реализованная в базовой комплектации автоматическая адаптация под внешние климатические условия. Термисторы (тепловые резисторы) окружающей среды устанавливаются опционально. То есть при изменениях внешней температуры, предлагается настраивать режим работы вручную.

Оборудование для объектов с большим потреблением тепла

Для полного обеспечения потребностей в тепловой энергии жилых и коммерческих зданий, площадью более 200 м². Дистанционное управление, каскадная эксплуатация, взаимодействие с рекуператорами и гелиосистемами – расширяют возможности пользователя в создании комфортной температуры.

8. WATERKOTTE EcoTouch DS 5027.5 Ai (Германия) – от 708 521 руб.

Модификация DS 5027.5 Ai – самая мощная в линейке EcoTouch. Стабильно прогревает теплоноситель отопительного контура и обеспечивает тепловой энергией систему ГВС в помещениях до 280 м².


Спиральный (самый производительный из существующих) компрессор; регулировка скорости потока теплоносителя позволяет получить стабильные показатели температуры на выходе; цветной дисплей; русифицированное меню; аккуратный внешний вид и низкий уровень шума. Каждая деталь для комфортной эксплуатации.

При активном пользовании точками водоразбора включаются тэны, из-за чего энергопотребление увеличивается на 6 кВт/ч.

9. DANFOSS DHP-R ECO 42 (Швеция) – от 1 180 453 руб.

Достаточно мощное оборудование для того чтобы обеспечить тепловой энергией систему горячего водоснабжения и отопительные контуры многоуровневого коттеджа с постоянным проживанием.


Вместо дополнительного обогревателя для ГВС, здесь задействован поток горячей воды с подачи отопительного контура. Пропуская уже горячую воду через пароохладитель, тепловой насос разогревает воду в дополнительном теплообменнике ГВС до 90 °С. Стабильная температура в СО и баке ГВС поддерживается за счёт автоматической регулировки скорости циркуляционных насосов. Подходит для каскадного подключения (до 8 ТН).

Нет тэнов для отопительного контура. Дополнительные ресурсы отбираются у любого сочетаемого котла – блок управления возьмет от него столько тепла, сколько требуется в конкретном случае.

При расчёте места под монтаж теплового насоса необходимо оставлять зазор в 300 мм между стеной и задней поверхностью устройства (для удобства контроля и обслуживания коммуникаций).

10. Viessmann Vitocal 300-G WWC 110 (Германия) – от 630 125 руб.

В роли теплоносителя первого контура – грунтовые воды. Отсюда и постоянная температура на первом теплообменнике, и самый высокий коэффициент СОР.


Среди плюсов — вспомогательный электронагреватель небольшой мощности на первом контуре и фирменный контроллер (по сути – беспроводной пульт) для удалённого управления.

Минус — работоспособность циркуляционного насоса, состояние магистрали и теплообменника первого контура зависит от качества перегоняемых грунтовых вод. Фильтрация обязательна.

Исключить появление сложно решаемых проблем с дорогостоящим оборудованием, поможет анализ грунтовых вод. Который следует сделать до покупки теплового насоса системы «вода-вода».

Выбор редакции

Многолетний опыт производства и эксплуатации тепловых насосов в Северной Европе позволил нашим соотечественникам сократить область поиска самого выгодного способа обогреть свой дом. Реальные варианты существуют под любой запрос.

Надо обеспечить теплом контур ГВС или систему отопления жилого дома до 80 — 100 м²? Рассмотрите потенциал NIBE F1155 – его «интеллектуальная» начинка экономит без ущерба теплоснабжению.

Стабильную температуру в контурах тёплого пола, СО, ГВС коттеджа в 130 м² обеспечит –здесь задействован теплообменник ГВС (180 литров).

Выдаёт постоянный тепловой поток одновременно для всех потребителей. Возможность создания каскада из 8 ТН позволяет обеспечить теплом объект площадью не менее 3 000 м².

Каждая из указанных моделей – не безусловный, а базовый вариант. Если вы нашли подходящий ТН – просмотрите всю линейку, изучите опциональные предложения. Ассортимент оборудования большой, есть риск пропустить свой идеальный вариант.

Статья помогла вам найти выгодный вариант отопления, или требуется дополнительная информация – пишите в комментариях. Отвечаем незамедлительно.

Отправим материал вам на e-mail

Извлечение тепла из грунта и водных источников – не такое уж новшество. Западный мир давно использует геотермальную энергию для отопления жилья. Все актуальнее эта тема становится по мере того, как у коммунальщиков растут цены. Тепловой насос для отопления дома даёт возможность экологично, безопасно и бесплатно согреть батареи.

Тепловой насос обогревает дом природным теплом

Тепловой насос для отопления дома: принцип работы, достоинства и недостатки

Образец подобного тепловому насосу устройства есть в каждом доме – это холодильник. Он вырабатывает не только холод, но и тепло – это заметно по температуре задней стенки агрегата. Подобный принцип заложен и в тепловом насосе – он набирает термальную энергию из воды, земли и воздуха.

Принцип работы и устройство

Система работы устройства следующая:

  • вода из скважины или водоёма проходит через испаритель, где её температура падает на пять градусов;
  • после охлаждения жидкость попадает в компрессор;
  • компрессор сжимает воду, увеличивая её температуру;
  • нагретая жидкость перемещается в теплообменную камеру, где отдаёт своё тепло системе отопления;
  • остывшая вода возвращается к началу цикла.


Системы отопления на основе теплонасосных установок имеют три составные части:

  • Зонд – змеевик, расположенный в воде или земле. Он собирает тепло и передаёт его в устройство.
  • Тепловой насос – прибор, извлекающий термальную энергию.
  • Сама система отопления, включающая теплообменную камеру.

Плюсы и минусы устройства

Сначала о положительных сторонах подобного отопления:

  • Сравнительно небольшие энергозатраты. На отопление расходуется только электроэнергия, причём её потребуется гораздо меньше, чем, например, на отопление с помощью электроприборов. В тепловых насосах есть коэффициент преобразования, указывающий выход тепловой энергии по отношению к затраченной электрической. Например, если значение «ϕ» равно 5, значит на 1 киловатт в час расхода электричества придётся 5 киловатт тепловой энергии.


  • Универсальность. Эта отопительная система может устанавливаться в любой местности. Особенно это актуально для удалённых районов, где отсутствуют газовые магистрали. При невозможности подключения электроэнергии насос может работать на дизельном или бензиновом двигателе.
  • Полная автоматизация. В систему не нужно добавлять воду или следить за её работой.
  • Экологичность и безопасность. Теплонасосная установка не производит никаких отходов и газов. Устройство не может случайно перегреться.
  • Такой агрегат может не только отапливать дом зимой при температуре воздуха до минус пятнадцати градусов, но и охлаждать его летом. Такие функции есть в реверсивных моделях.

  • Длительный период эксплуатации – до полувека. Примерно раз в двадцать лет может потребоваться замена компрессора.

Есть у этой системы и свои недостатки, о которых нельзя не упомянуть:

  • Цены. Тепловой насос для отопления дома – не дешёвое удовольствие. Окупится эта система не раньше, чем через пять лет.
  • В местности, где зимняя температура опускается ниже пятнадцати градусов мороза, для функционирования устройства потребуются дополнительные источники тепла (электрические или газовые).
  • Система, забирающая тепловую энергию из земли, нарушает экосистему участка. Урон не значительный, но следует это учитывать.


Точка зрения эксперта

Андрей Старповский

Задать вопрос

«При желании можно изготовить тепловой насос для отопления дома из холодильника своими руками. Но для этого понадобятся определённые технические познания.»

Какой насос выбрать

Установки различаются по источнику тепловой энергии и способу её передачи. Существует пять основных видов:

  • Вода-воздух.
  • Грунт-вода.
  • Воздух-воздух.
  • Вода-вода.
  • Воздух-вода.

Исследование участка

Перед монтажом отопительной системы важно исследовать особенности участка. Это исследование поможет определиться, какой источник термальной энергии станет оптимальным вариантом. Проще всего, если рядом с домом есть водоём. Этот факт освободит от необходимости проводить земляные работы. Ещё одно практичное решение – использовать участок, на котором постоянно дует ветер. Если нет ни того, ни другого, придётся остановиться на земляных работах.

Система отопления может иметь два варианта монтажа:

  • с применением зондов;
  • с установкой подземного коллектора.

Насос грунт-вода и варианты установки

Геотермальные зонды обычно устанавливают на небольшом участке, площадь которого не позволяет проложить большой трубопровод. Для установки этой системы потребуется оборудование для бурения, так как глубина скважин должна быть не менее ста метров, диаметр – двадцать сантиметров. В такие скважины опускаются зонды. Количество скважин влияет на производительность отопительной системы.

Если площадь участка достаточно большая, можно обойтись без бурения и установить горизонтальную систему. Для этой цели змеевик закапывают на полутораметровую глубину. Этот вариант системы считается самым стабильным и безотказным.

Насос вода-вода: простая установка

Тепловой насос для отопления дома вода-вода подходит для участков с водоёмами. Для трубопровода можно использовать обычные полиэтиленовые трубы . Собранный коллектор перемещают к пруду и там опускают на дно. Это один из самых дешёвых вариантов монтажа, который возможно выполнить самостоятельно.

Тепловой насос воздух-воздух: цена монтажа

На участке, где постоянно присутствуют ветра, подойдёт система, использующая тепловую энергию воздуха. Монтаж в этом случае тоже не потребует особых затрат, его можно выполнить своими руками. Потребуется лишь установить насос не далее, чем за двадцать метров от дома в самом продуваемом месте.

Тепловой насос для отопления дома: цены и производители

Теплонасосные установки на российском рынке представлены продукцией фирм: Vaillant (Германия), Nibe (Швеция), Danfoss (Дания), Mitsubishi Electric (Япония), Mammoth (США), Viessmann (Германия). Не уступают им в качестве и российские производители SunDue и Henk.

Для отопления дома площадью сто квадратных метров потребуется десятикиловаттная установка.

Таблица 1. Средняя стоимость разных типов насосов мощностью 10 киловатт

Изображение Тип насоса Стоимость оборудования, руб Стоимость монтажных работ, руб
Грунт-вода
Импортные производители
От 500 000 От 80 000
Грунт-вода отечественные производители От 360 000 От 70 000
Воздух-вода
Импортные производители
От 270 000 От 50 000
Воздух-вода
Отечественные производители
От 210 000 От 40 000
Вода-вода импортные производители От 230 000 От 50 000
Вода-вода отечественные производители От 220 000 От 40 000

Цена под ключ теплового насоса в среднем составляет около 300 – 350 тысяч рублей. Самым бюджетным вариантом считается система «воздух-вода», так как она не требует осуществления дорогостоящих земляных работ.

Точка зрения эксперта

Андрей Старповский

Руководитель группы "Отопление, вентиляция и кондиционирование воздуха" ООО "ГРАСТ"

Задать вопрос

Мировой энергетический комитет составил прогноз использования источников тепла для обогрева зданий на 2020 год. В нем утверждается, что в развитых странах 75% домов будут получать горячее водоснабжение и отапливаться геотермальной энергией нашей планеты.

На сегодняшний день 40% всех новых домов Швейцарии оборудованы тепловыми насосами, а в Швеции этот показатель доведен до 90%. Россия и страны СНГ меньше внедряют тепловой насос для отопления дома, хотя первые энтузиасты уже пользуются этим методом, передавая свой опыт последователям.

Принципы работы

Для обогрева здания используется перенос энергии источника низкого потенциала (температуры) теплоносителем к потребителю. В технологическом процессе используется закон термодинамики, обеспечивающий выравнивание тепловых энергий двух систем с разными температурами: передача мощности горячего источника холодному потребителю.

При использовании тепла окружающей среды осуществляется повышение его температурного потенциала для обогрева и горячего водоснабжения.

Источником регенеративного тепла могут быть:

  • поверхность земли или ее объем;
  • водная среда (озеро, река);
  • воздушные массы.

Более популярны модели, забирающие энергию от земли, поверхность которой обогревается солнечными лучами и энергией внешнего и внутреннего ядра планеты. Они отмечаются:

  1. лучшим сочетанием потребительских качеств;
  2. эффективностью;
  3. ценой.

Схемы циркуляции теплоносителей

При работе теплового насоса (ТН) используется три замкнутых контура, по которым циркулируют различные жидкости/газы - теплоносители. Каждый из них выполняет свои функции.

Контур съема потенциала энергии источника

При заборе тепла воздуха используется искусственный обдув корпуса испарителя воздушными потоками от вентиляторов.

Замкнутый цикл жидкого теплоносителя для передачи тепла водной среды или земли осуществляется по трубопроводам, которые соединяют змеевик испарителя с коллектором, утопленным на дно водоема либо заглубленным в землю на расстояние, превышающее промерзание грунта в сильные холода.

В качестве теплоносителя применяются незамерзающие жидкости на основе разбавленных водных растворов спирта. Их принято называть «антифризы» или «рассолы». Они под влиянием более высокой температуры (≥+3ºС) поднимаются к испарителю, передают ему тепло, а после охлаждения (≈-3ºС) самотеком направляются назад к источнику энергии, обеспечивая непрерывную циркуляцию.

Внутренний контур

По нему циркулирует хладагент на основе фреона, «поднимая» тепло на более высокий уровень. Под действием температуры он последовательно переходит в газообразное и жидкостное состояние.

В состав внутреннего контура входят:

  • испаритель, забирающий энергию от рассолов и передающий ее фреону, который при этом закипает и становится разреженным газом;
  • компрессор, сжимающий газ до высокого давления. При этом резко увеличивается температура фреона;
  • конденсатор, в котором горячий газ передает свою энергию теплоносителю выходного контура, а сам остывает, переходя в жидкое состояние;
  • дроссель (расширительный клапан), редуцирующий фреон за счет перепада давления до состояния насыщенного пара для поступления в испаритель. При прохождении хладагента через узкое отверстие давление теплоносителя падает до начального значения.

Выходной контур

Здесь циркулирует вода. Она обогревается в змеевике конденсатора для использования в обычной жидкостной системе отопления. При этом способе ее температура достигает порядка 35ºС, что обусловливает ее применение в системе «Теплый пол» с длинными магистралями, позволяющими равномерно передавать генерируемую энергию всему объему помещения.

Использование только радиаторов отопления , создающих меньшие объемы теплообмена с пространством комнат, не так эффективно.

Конструктивное исполнение

Промышленность выпускает различные по эксплуатационным характеристикам модели, но они имеют в своем составе оборудование, выполняющее типовые задачи, описанные выше.

Как вариант конструктивного исполнения на рисунке представлен тепловой насос для отопления дома.

Здесь по входным трубопроводам принимается тепло от геотермальных источников, а по выходным - передается в систему обогрева дома.

Работа теплового насоса обеспечивается:

  • системой контроля параметров схемы и управления, включая дистанционные способы через интернет;
  • дополнительным оборудованием (узлы промывки и заполнения, расширительные баки, группы безопасности, насосные станции).

Грунтовые конструкции

Они используют три схемы устройства теплообменников для забора энергии от источника:

  1. поверхностное расположение;
  2. установка вертикальных грунтовых зондов;
  3. заглубление горизонтальных конструкций.

Первый метод наименее эффективен. Поэтому он редко применяется для отопления дома.

Установка зондов в скважинах

Этот способ наиболее эффективен. Он предусматривает создание скважин на глубины порядка 50÷150 метров и больше для размещения U-образного трубопровода из пластиковых материалов с диаметром от 25 до 40 мм.

Увеличение площади поперечного сечения трубы, как и углубление скважины, создает улучшенный теплосъем, но удорожает конструкцию.

Горизонтальные коллекторы

Бурение скважин для зондов стоит дорого. Поэтому часто выбирается этот способ, как более дешевый. Он позволяет обойтись рытьем траншей ниже глубины промерзания почвы.

В проекте горизонтального коллектора следует учитывать:

  1. теплопроводность грунта;
  2. среднюю влажность почвы;
  3. геометрию участка.

Они влияют на габариты и конфигурацию коллектора. Трубы могут укладываться:

  • петлями;
  • зигзагами;
  • змейкой;
  • плоскими геометрическими фигурами;
  • винтовыми спиралями.

Важно понимать, что площадь участка, отводимого под такой коллектор, обычно превышает габариты фундамента дома в 2÷3 раза. Это основной недостаток такого метода.

Водные коллекторы

Это наиболее экономичный способ, но он требует расположения около здания глубокого водоема. На его дне размещают и закрепляют грузами собранные трубопроводы. Для эффективной работы теплового насоса требуется просчитать минимальную глубину закладки коллектора и объем водоема, способного обеспечить теплосъем.

Габариты такой конструкции определяются проведением тепловых расчетов и могут достигать протяженности более 300 метров.

Рисунок ниже демонстрирует подготовку магистралей для сборки на льду весеннего озера. Он позволяет визуально оценить масштабы предстоящей работы.

Воздушный метод

Внешний или встроенный вентилятор нагнетает воздух с улицы прямо на испаритель с фреоном, как в кондиционере. При этом не требуется создавать громоздкие конструкции из труб и помещать их в грунт или водоем.

Тепловой насос для отопления дома, работающий по такому принципу, стоит дешевле, но использовать его рекомендуется в относительно теплом климате: морозный воздух не позволит работать системе.

Подобные устройства нашли широкое применение для обогрева воды в бассейнах или помещений, расположенных рядом с промышленными устройствами, постоянно участвующими в технологическом процессе и выделяющими в атмосферу тепло мощными системами охлаждения. В качестве примера можно привести силовые автотрансформаторы энергетики, дизельные станции, котельные.

Основные характеристики

При выборе модели ТН следует учитывать:

  • выходную тепловую мощность;
  • коэффициент трансформации тепловых насосов;
  • условный кпд;
  • годовую эффективность и издержки.

Выходная мощность

При создании нового проекта дома учитывают его потребности в тепле с учетом конструктивных особенностей материалов, создающих теплопотери через стены, окна, двери, потолок и пол помещений различных габаритов. Расчет учитывает создание комфорта при самых низких морозах в конкретной местности.

Потребляемая тепловая мощность здания выражается в кВт. Она должна покрываться вырабатываемой энергией теплового насоса. Однако часто при расчетах делают упрощение, позволяющее экономить: длительность самых холодных дней в течение года не превышает нескольких недель. На этот период подключается дополнительный источник тепла, например, ТЭНы, подогревающие воду в котле.
Они работают только в критических ситуациях при морозах, а в остальное время отключены. Это позволяет использовать ТН с меньшими мощностями.

Возможности конструкций

Для справки. Модели выходной мощности 6÷11 кВт «рассольно-водяных» схем способны нагревать воду встроенных баков в относительно небольших постройках. Мощность в 17 кВт достаточна для поддержания температуры воды 65ºС у котла с емкостью 230÷440 литров.
Потребности в тепле средних по величине зданий покрывают мощности 22÷60 кВт.

Коэффициент трансформации тепловых насосов Ктр

Он определяет эффективность конструкции по безразмерной формуле:

Kтр=(Твых-Твх)/Твых

Величина «Т» обозначает температуру теплоносителей на выходе и входе в конструкцию.

Коэффициент преобразования энергии (ͼ)

Его рассчитывают для определения доли полезной мощности тепла по отношению к приложенной энергии на компрессор.

ͼ=0,5Т/(Т-То)=0,5(ΔТ+То)/ΔТ

Для этой формулы температура потребителя «Т» и источника «То» определяется в градусах Кельвина.

Величину ͼ можно определить по количеству затраченной энергии на работу компрессора «Рэл» и полученной полезной теплопроизводительности «Рн». В этом случае его называют «СОР» по сокращению от английского термина «Coefficient of perfomance».

Коэффициент ͼ - переменная величина, зависимая от перепада температур между источником и потребителем. Он обозначается цифрами от 1 до 7.

Условный КПД

Это неверное утверждение: коэффициент полезного действия учитывает потери мощности при работе конечного устройства.
Для его определения надо выходную тепловую мощность разделить на приложенную с учетом энергии геотермальных источников. При таком расчете вечного двигателя не получится.

Годовая эффективность и издержки

Коэффициент СОР оценивает работу теплового насоса в определенный момент времени при конкретных условиях эксплуатации. Чтобы проанализировать работу ТН, введен показатель эффективности системы за год (β).

Здесь символ Qwp обозначает величину тепловой энергии, произведенной за год, а Wel - значение потребленного электричества установкой за то же время.

Показатель издержек Eq

Эта характеристика обратна показателю эффективности.

Для определения характеристик ТН используется специализированное программное обеспечение и заводские стенды.

Отличительные черты

Преимущества

Отопление дома тепловым насосом в сравнении с другими системами обладает:

  1. хорошими параметрами экологичности;
  2. большим сроком службы оборудования без технического обслуживания;
  3. возможностью простого переключения режима обогрева зимой на кондиционирование летом;
  4. высокой годовой эффективностью.

Недостатки

На стадии проекта и при эксплуатации приходится учитывать:

  1. сложность выполнения точных технических расчетов;
  2. высокую стоимость оборудования и монтажных работ;
  3. возможности образования «воздушных пробок» при нарушениях технологии укладки трубопроводов;
  4. ограниченную температуру воды на выходе из системы (≤+65ºС);
  5. строгую индивидуальность каждой конструкции для любого здания;
  6. потребность больших площадей для коллекторов с исключением строительства объектов на них.

Краткий перечень производителей

Современный тепловой насос для отопления дома выпускают такие компании, как:

  • Bosch - Германия;
  • Waterkotte - Германия;
  • WTT Group OY - Финляндия;
  • ClimateMaster - США;
  • ECONAR - США;
  • Dimplex - Ирландия;
  • FHP Manufacturing - США;
  • Gustrowr - Германия;
  • Heliotherm - Австрия;
  • IVT - Швеция;
  • LEBERG - Норвегия.

Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.


2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома - вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен - электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент - не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации - использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.

Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) - тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети).

Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы - с помощью такого теплового насоса можно заодно получить горячую воду в доме.

Но самым интересной выглядит категория тепловых насосов класса «воздух - воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим - 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это - «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению - для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома - в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) - установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше - в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает - переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ - температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.

Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.

Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.

При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.
При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.
При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.
При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.

Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре - 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?
Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.
В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.
Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.
В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается.
Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент - кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.

Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент - как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов - японцы).

Электрическое отопление:
Электрический котел - 50 тыс рублей
Трубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:
Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей.
Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.

Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей.

Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!

Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то.

Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них - обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте - производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени -