Кварцевая керамика. Кварцевое стекло и керамика Узлы из кварцевого стекла и металла

Являясь официальным представителем голландского производителя изделий из кварцевого стекла и керамики LSP-QUARTZ, предлагаем Вам изделия из высококачественного кварцевого стекла и вакуумной керамики.

Трубы из кварцевого стекла

Кварцевые трубы диаметром до 450 мм и длиной до 8000 мм. Точность изготовления ±0,2 to 1,2 мм на диаметр и толщину.

Лодочки для полупроводниковых пластин

Лодочки предназначены для размещения полупроводниковых пластин в реакторе при проведении процессов диффузии. Лодочки для полупроводниковых пластин могут быть изготовлены для пластин с диаметром от 76 до 400 мм. Стандартная длина лодочки 1600 мм.

Узлы из кварцевого стекла и металла

Соединения из кварцевого стекла и металла могут применяться в вакуумном оборудовании, для подачи напряжения в камеры, в индукционных печах.

Изделия по чертежам заказчика

Изделия из кварцевого стекла, керамики или их соединения с металлическими деталями выполняются по чертежам, согласованным с заказчиком. Возможно изготовление на основе эскизов или трехмерных моделей.

Керамика на основе ВеО (брокерит, броммелитовая керамика).

Техническая керамика.

Керамика – это материал, получаемый спеканием порошков заданного состава при температурах, существенно ниже их температуры плавления. Структура керамики близка к структуре ситаллов. И керамика и ситаллы состоят из кристаллических и аморфных фаз, но в керамике ещё имеются газовые фазы. Их присутствие в керамике обусловлено технологией. Технологический процесс производства керамических изделий включает много операций. Ключевыми операциями являются подготовка исходных компонентов, заключающаяся в измельчении сырья до заданного уровня, смешении компонентов, формовании изделия и обжиг. Формование керамического изделия часто проводится путём прессования. Чем выше давление прессования и чем мельче порошки, тем меньше пор в керамике, тем меньше содержание газовой фазы.

На пористость керамики также большое влияние оказывает режим спекания. Вообще, спекание – это очень сложный физико-химический процесс. Внешним признаком спекания является уменьшение размеров изделия и, соответственно, увеличение кажущейся плотности. Спекание порошка начинается обычно со «сваривания» зёрен в местах контакта. Сущность спекания заключается в самопроизвольном заполнении веществом свободного пространства внутри зёрен и между ними. При этом происходит уменьшение дефектности кристаллических решёток, снятия имеющихся напряжений в контактных участках материала. Движущей силой процесса спекания является стремление системы к уменьшению поверхностной энергии, в данном случае это выражается в уменьшении поверхности. Поэтому мелкозернистые порошки спекаются быстрее, чем крупнозернистые.

Одновременно с процессом спекания протекает рекристаллизация. Она заключается в образовании одних зёрен тела за счёт других. Состав кристаллических фаз при этом часто существенно изменяется. Если состав кристаллических фаз не изменяется, то рекристаллизация сводится к полиморфным превращениям, то есть, к образованию различных кристаллических модификацией одного и того же вещества. Если состав кристаллических фаз в процессе рекристаллизации изменяется, то это обусловлено либо диффузией компонентов и образованием твёрдых растворов, либо образованием новых веществ в результате химических реакций в смесях твёрдых веществ.

Механизм реакций в смесях твёрдых веществ очень сложен. Из курса химии известно, что твёрдые вещества химически не взаимодействуют друг с другом. Их химическое взаимодействие возможно только за счёт массопередачи путём внутренней диффузии, а коэффициент диффузии твёрдого в твёрдом очень мал – 10 -8 – 10 -16 м 2 /с. Таким образом, скорость чисто твёрдофазных реакций пренебрежимо мала. Практический опыт противоречит этим общим представлениям. Это связано с тем, что в действительности химические превращения при спекании керамических масс протекают при участии газовых и жидких фаз. Газовые фазы образуются, например, за счёт возгонки или диссоциации твёрдых веществ. Жидкие фазы образуются за счёт плавления одного из исходных компонентов или их эвтектических смесей.



В качестве примера такого процесса можно назвать взаимодействие оксидов цинка и алюминия с образованием шпинели

ZnO (тв) + Аl 2 O 3(тв) = ZnAl 2 O 4(тв)

ZnO (тв) ® ZnO (газ)

ZnO (газ) + Al 2 O 3(тв) ® ZnAl 2 O 4(тв) (ZnO . Al 2 O 3)

В состав смеси обычно добавляют небольшие количества так называемых «минерализаторов» или «плавней», имеющих относительно низкие температуры плавления. Они химически инертны по отношению к реакционной смеси, однако существенно изменяют условия реакции и свойства получаемого продукта. Механизм действия минерализаторов заключается либо в создании центров кристаллизации, либо в изменении скорости кристаллизации (в частности, путём изменения вязкости системы и отвода тепла от неё), либо в изменении кристаллической решётки и, соответственно, свойств кристаллических тел. Реакции в кристаллических смесях широко используются при изготовлении керамических изделий со специфическими свойствами.

Областей применения керамики не меньше, если не больше, чем областей применения полимеров. Керамика – первый искусственный материал, созданный человеком. Уже в каменном веке человек использовал предтечу керамики – глиняную посуду, пока не обожжённую. Первые обожжённые изделия появились в каменном веке – это была посуда, строительные материалы, декоративные и бытовые изделия из фаянса. Расцвет керамики относится к ХХ веку – этот период порой называют веком пластмасс и керамики.

Кроме традиционных направлений керамика используется в транспорте, машиностроении, приборостроении, электротехнике, электронике, энергетике, химической технологии, медицине, обрабатывающих орудиях, текстильной промышленности. Трудно найти область техники, где бы сейчас не использовалась керамика.

Термин «техническая керамика» отделяет керамику технического назначения от художественной керамики. Развитие технологии технической керамики вызвало появление керамики специального назначения, так называемой «тонкой технической керамики».

В основу классификации керамики положен признак наличия в ней определённого химического вещества, кристаллическая фаза которого преобладает в этом виде керамики. Область применения керамики является дополнительным признаком, так как одна и та же по своему составу керамика может использоваться в различных областях техники. В самом общем виде техническую керамику можно подразделить на следующие классы: 1) керамика из огнеупорных оксидов; 2) на основе силикатов и алюмосиликатов; 3) на основе двуокиси титана, титанатов, цирконатов и соединений с подобными свойствами; 4) на основе шпинелей; 5) на основе хромитов редкоземельных элементов; 6) на основе тугоплавких бескислородных соединений; 7) композиционные материалы.

6.1. Традиционная электротехническая керамика.

Электротехническую керамику подразделяют на 4 важнейших категории – магнитную, диэлектрическую, полупроводниковую и проводниковую, в том числе сверхпроводниковую. Все они характеризуются ионным строением кристаллических решёток. Рассмотрим вначале разновидность диэлектрической керамики – фарфоры. Основными компонентами фарфора являются пластичные глины и каолины, представляющие собой водные алюмосиликаты. Химическая формула каолина Аl 2 O 3 . 2SiO 2 . H 2 O. В состав фарфоров входят также кварцевые материалы (SiO 2), полевые шпаты (микроклин К 2 О. Аl 2 O 3 . 6SiO 2), глинозём (Al 2 O 3), кальцит (СаСО 3) и др.

Обожжённый фарфор состоит из кристаллов муллита 3Аl 2 O 3 . 2SiO 2 и кварца SiO 2 , промежутки между которыми заполнены стеклообразным материалом, образовавшимся в основном в результате расплавления полевого шпата.

Электротехнический фарфор содержит примерно 70% SiO 2 и 25% Al 2 O 3 . Остальное приходится на К 2 О, Na 2 O, Fe 2 O 3 и др.

Более высокими диэлектрическими свойствами обладает радиофарфор, стекловидная фаза которого облагорожена введением в неё тяжёлого оксида ВаО.

Дальнейшим усовершенствованием радиофарфора является ультрафарфор. Он содержит увеличенное количество глинозёма Аl 2 O 3 и ВаО. Ультрафарфор используется как высокочастотный диэлектрик вплоть до СВЧ.

Близкой по составу и свойствам к фарфору является стеатитовая керамика. Она в основном состоит из силикатов Мg и изготавливается на основе тальковых минералов 3МgO . 4SiO 2 . Н 2 О. Рецептура стеатитовой керамики и условия процесса спекания выбирают так, чтобы исключить полиморфные превращения силиката магния. Кроме силиката магния в рецептуру входят минерализаторы ZrO 2 , ZnO, ВаСО 3 и МgСО 3 , связывающие кремнезём SiO 2 , выделяющийся в процессе разложения талька при его нагревании. Свойства фарфоров представлены в таблице 7.

Таблица 7

Отличительной особенностью рассмотренных выше керамических материалов является очень быстрое ухудшение диэлектрических свойств с ростом температуры: возрастание tgd, падение r.

Все эти материалы имеют положительный коэффициент теплопроводности, лежащий в пределах (3 – 9) . 10 -6 К -1 .

Относительно высокий ТКЛР и низкий коэффициент теплопроводности 1,2 – 3,5 Вт/м. К обусловливают невысокую стойкость к термоударам. В этом отношении большой интерес представляют керамики на основе чистых оксидов, а также шпинели (двойные оксиды МgO . Al 2 O 3).

6.2. Оксидная керамика

Температура плавления чистого ВеО = 2570 ± 20 о С, энтальпия образования DН = - 616 ± 2,5 кДж/моль. Удельная теплоёмкость возрастает с увеличением температуры от 1,25кДж/кг. К при 100 о С до 2,08 при 900 о С. Твёрдость по Моосу кристаллов ВеО составляет 9, микротвёрдость – 15,2 ГН/м 2 . Самым удивительным теплофизическим свойством бериллиевой керамики является необычайно высокая теплопроводность = 219 Вт/м. К – во много раз выше теплопроводности остальных видов керамики, превосходящей теплопроводность большинства металлов и уступающей только серебру, меди и алюминию. Это свойство в сочетании с хорошими электрофизическими свойствами (e = 7, tge = 3 . 10 -4 , r = 10 13 Ом. м), высоким коэффициентом замедления и отражения тепловых нейтронов, малым поперечным сечением захвата и большим сечением рассеяния определило области применения этой керамики. Это ядерная энергетика (конструкционный материал, матричный материал для ядерного горючего), металлургия редких металлов (тигли для плавления Ве, Th, Pt, Ti, U и др.), электронная техника (мощные приборы СВЧ, теплоотводы различных радиоэлектронных устройств). Разработана технология прозрачной керамики из ВеО, высокоплотной и, наоборот, с повышенной пористостью (до 82 %).

При работе с ВеО необходимо учитывать её высокую токсичность. Бериллиевые соединения поражают кожу, дыхательные пути, вызывая пневмонию, раздражают желудочно-кишечный тракт и нервную систему. Предельно-допустимая концентрация Ве в воздухе рабочих помещений в виде тех или иных соединений не должна превышать 0,001 мг/м 3 .

6.2.2. Керамика на основе МgО (периклазовая керамика).

МgО – существует только в одной модификации и кристаллизуется в кубической системе. Т пл = 2800 о С, плотность = 3580 кг/м 3 , твёрдость – 6 по Моосу, энтальпия образования = - 613 кДж/моль, средняя удельная теплоёмкость изменяется от 0,975 при 100 о С до 1,22 кДж/г. К при 1500 о С.

МgО получают разложением химически чистых соединений Мg(ОН) 2 , МgСО 3 и др. МgО – более основной оксид, чем ВеО, способен взаимодействовать с водой, поэтому для приготовления шихты в качестве связок используют безводные растворы органических соединений – парафин, воск, олеиновую или стеариновую кислоты.

Спекание МgО производят в инертной или окислительной атмосфере при 1700 – 1800 о С. Добавки ZrO 2 , MnO 2 , Cr 2 O 3 , CaF 2 , B 2 O 3 , TiO 2 cнижают температуру спекания.

Теплопроводность периклазовой керамики умеренная – 28 Вт/м. К, но значительно более высокая, чем у фарфоров, поэтому и стойкость к термоударам более высокая. ТКЛР с ростом температуры повышается в диапазоне от 11,7 . 10 -6 до 14,2 . 10 -6 . Механические свойства периклазовой керамики достаточно высокие – предел прочности при сжатии s сж = 1200 – 1500 МПа, s изг в зависимости от технологии изменяется от 130 – 140 до 250 МПа, модуль упругости Е = 2,9 . 10 5 МПа.

Периклазовая керамика – хороший диэлектрик, e = 8 – 9, r v в зависимости от чистоты исходного продукта лежит в интервале от 10 15 до

Периклазовая керамика используется как огнеупорная, в тиглях из которой можно с высокой степенью чистоты плавить металлы, которые не восстанавливают МgО, например, Fe, Zn, Al, Sn, Cu, а также тяжёлые редкоземельные металлы. Может использоваться для футеровки высокотемпературных печей и аппаратов, работающих до 2000 о С, для изготовления пирометрических изделий (капилярные трубки, бусы), высокотемпературных изоляторов.

Прозрачная магниевая керамика используется для окон в высокотемпературных печах, устройствах инфракрасного контроля, натриевых лампах, химических реакторах. Однако способность к гидратации, выражающаяся в потемнении полированных поверхностей, летучесть при высокой температуре и сравнительно невысокая механическая прочность несколько ограничивают её использование.

6.2.3. Керамика из оксида алюминия – корундовая керамика.

Оксид алюминия Аl 2 O 3 может существовать в трёх основных кристаллических модификациях - a, b и g, причём a- и g- формы представляют собой чистые оксиды, а b-форма представляет собой условное обозначение группы алюминатов с высоким содержанием Аl 2 O 3 . Кроме них, зафиксированы ещё несколько кристаллических модификаций, большинство из которых при 1200 о С переходят в a-форму (корунд). Основным структурным мотивом в корунде служит алюмокислородный октаэдр. В природных условиях встречается только a-форма в виде минерала корунда, рубина, сапфира. Твёрдость корунда по шкале Мооса – 9, по шкале Роквелла – 90. Плотность корунда в зависимости от наличия в нём примесей колеблется от 3980 до 4010 кг/м 3 . Температура плавления составляет 2050 о С, энтальпия образования 1,7 МДж/моль.

Именно керамика, содержащая более 95% a-Аl 2 О 3 называется корундовой керамикой. В качестве минерализаторов используют МgO, MnO 2 , TiO 2 , ZrO 2 . Наиболее эффективно работает TiO 2 , который образует твёрдый раствор с a-Аl 2 О 3 и снижает температуру спекания с 1700 – 1750 о С до 1500 –1550 о С, одновременно способствуя интенсивному росту кристаллов корунда.

Добавка МgO, наоборот, задерживает рост кристаллов корунда и обеспечивает высокую плотность, т.к. не происходит образование пор. Мелкокристаллическая структура керамики обеспечивает лучшие механические свойства, такая керамика (микролит, ЦМ 332) используется для изготовления резцов для обработки металлов, деталей для протяжки проволоки, фильеры, нитеводители и другой износостойкий инструмент, а также абразивные материалы – абразивные круги, абразивные шлифовальные шкурки и т.п. Кроме того, такая керамика (поликор) обладает светопроницаемостью в видимой и инфракрасной части спектра, однако, если количество МgO превышает 0,6% (предел образования твёрдого раствора), светопропускание резко падает. Поликор обладает хорошими диэлектрическими свойствами: tgd = 3 . 10 -5 , r = 10 16 Ом. м, e = 10 – 12, Е пр = 15 МВ/м. Коэффициент теплопроводности l - 32 Вт/м. К, ТКЛР 8 – 8,5 . 10 -6 К -1 . Поликор обладает высокой стойкостью к термоударам – он выдерживает до 4 теплосмен (800 о С – 20 о С).

Светопроницаемая (прозрачная) керамика применяется в натриевых лампах, для окон устройств инфракрасного контроля, для изготовления подложек СВЧ – микросхем, корпусов микросхем, изоляторов авто- и авиасвечей зажигания, установочных деталей, высокотемпературных реле, вакуумплотных спаев, антенных обтекателей в авиа- и ракетостроении и др.

Пористая корундовая керамика с пористостью до 90% служит хорошим теплоизолирующим материалом при температурах до 1700 – 1750 о С, применяется в качестве деталей костных имплантантов (биокерамика).

Керамика из b-Аl 2 O 3 (Na 2 O . 11Al 2 O 3), благодаря присутствию в ней оксида натрия используется для изготовления твёрдых электролитов. Электросопротивление такой керамики при комнатной температуре составляет 1 – 5 . 10 2 Ом. см, а при 500 о С – 10 – 25 Ом. см. Такие материалы используют в высокоэффективных химических источниках тока, в частности, в энергоёмких натриево-серных аккумуляторах, перспективных для создания электромобиля.

Другой областью применения керамика из b-Аl 2 O 3 – плавленные огнеупоры (в сочетании с корундом) для футеровки стекловаренных печей.

Кварцевая керамика – условное название изделий, получаемых методами керамической технологии из порошкообразного стекла с содержанием SiO 2 ³ 99,5%. Это - единственный керамический материал, основу которого составляет не кристаллическая, а аморфная, стекловидная фаза. Создание кварцевой керамики – вынужденная мера и вызвана большими технологическими трудностями при формовании изделий из кварцевого стекла в связи с большой вязкостью расплава кремнезёма даже при 2000 о С.

Выпускается как плотная, так и пористая кварцевая керамика с пористостью до 80 – 85%. При обжиге, начиная с 1200 о С, начинается процесс кристаллизации кварцевого стекла. Образуется высокотемпературная a-форма кристобалита. При охлаждении a-форма переходит в низкотемпературную b-форму (180 – 270 о С). Это сопровождается уменьшением объёма на 5,2% и, соответственно, повышением истинной плотности с 2210 до 2330 кг/м 3 .

КЛТР кварцевой керамики (~ 0,5 . 10 -6 К -1) почти на порядок ниже, чем у других видов оксидной керамики. Это определяет её высокую стойкость к термоударам, хотя её теплопроводность и не высока (0,7 – 1,4 Вт/м. К).

Диэлектрические свойства кварцевой керамики достаточно высоки: e = 3 – 3,7; tgd = 6 . 10 -4 .

Кварцевая керамика может длительно эксплуатароваться при температурах до 1200 – 1300 о С. Она используется как теплоизолятор в тепловых агрегатах, труб для подачи расплавленного алюминия, форм для литья металлов, изготовления обтекателей в ракетной и космической технике и др.

6.2.5. Керамика из диоксида циркония ZrO 2

ZrO 2 – устойчивое соединение, проявляет полиморфизм, существует в трёх модификациях – моноклинной, тетрагональной и кубической. Моноклинная устойчива при низких температурах, при нагревании до 1200 о С переходит в тетрагональную форму, устойчивую только при высоких температурах. Этот переход сопровождается усадкой на 7,7 %. При охлаждении ниже 1000 о С происходит обратный переход с соответствующим изменением объёма и плотности. При температуре от 1900 до 2700 о С устойчивой формой является кубическая. Плотность моноклинной формы 5560 кг/м 3 , твёрдость по Моосу = 6,5, температура плавления Т пл = 2700 о С. Циклические изменения температуры приводят к разрушению керамики. Для стабилизации кубической модификации создают твёрдые растворы ZrO 2 c CaO, MgO, Y 2 O 3 и др. Такой материал называется «стабилизированным диоксидом циркония», однако, он плохо сопротивляется тепловым ударам. Оказалось, что хорошую стойкость к термоударам проявляет материал, сохраняющий в кубической модификации небольшое количество тетрагональной модификации ZrO 2. На рис.5.1 представлены кривые изменения ТКЛР различных модификаций.

Свойства изделий из спечённого ZrO 2 связаны со степенью стабилизации, видом и количеством введённого стабилизатора. В целом можно сказать, что керамика обладает большой прочностью при нормальных температурах и сохраняют достаточно высокую прочность до 1300 – 1500 о С. Так, s сж при 20 о С составляет 2100 МПа, а при 1400 о С – 1300 МПа.

Интересна зависимость теплопроводности циркониевой керамики от температуры. Если у большинства керамик с ростом температуры l снижается, то у ZrO 2 - керамики остаётся практически постоянной.

Диэлектрические свойства диоксида циркония невысоки. Уже при 1000 – 1200 о С он фактически представляет собой проводник. Проводимость имеет ионный характер благодаря образованию кислородных вакансий при замещении ионов Zr +4 двухвалентными и трёхвалентными ионами. Наибольшая проводимость достигается при стабилизации диоксида циркония оксидом скандия Sc 2 O 3 .

Циркониевая керамика используется в качестве твёрдых электролитов для работы при высоких температурах, например, в топливных элементах, где температуры достигают 1000 – 1200 о С, в МГД-генераторах, в высокотемпературных нагревателях для разогрева в печах до 2200 о С. В качестве огнеупоров используется при высокотемпературных плавках ряда металлов и сплавов, в частности, Pt, Ti, Rh, Pd, Ru, Zr и др. Благодаря низкой теплопроводности, отличной химической стойкости и большой твёрдости и прочности ZrO 2 - керамика используется в ракетных, реактивных и других двигателях, в атомном реакторостроении.

6.2.6. Керамика из оксида иттрия Y 2 O 3 .

Оксид иттрия до 2300 о С не проявляет полиморфных превращений. Т пл = 2410 – 2415 о С. Плотность кристаллов – 5030 кг/м 3 , удельная теплоёмкость составляет 0,105 кДж/кг. К, энтальпия образования DН = -1910 кДж/моль, потенциал Гиббса DG = -1820 кДж/моль. В окислительной атмосфере (воздух) оксид иттрия стабилен вплоть до Т пл. Стойкость к термоударам спечённой керамики невысока. Это обусловлено малой теплопроводностью (8,5 Вт/м. К) и относительно высоким ТКЛР = 8 – 9 . 10 -6 К -1 . По электрическим свойствам иттриевая керамика относится к хорошим изоляторам: r v при 500 о С составляет 8 . 10 10 Ом. м, e = 14.

Керамика из Y 2 O 3 c плотностью, близкой к теоретической, является наиболее прозрачной с высоким светопропусканием (до 80 %). Она применяется для изготовления ИК-окон летательных аппаратов, в качестве смотровых окон высокотемпературных печей. Другие области применения – электровакуумная техника, атомная энергетика (контейнерный материал), тигли для восстановления урановых соединений, стабилизационный материал для циркониевой керамики, конструкционный материал и др.

Компания «Керамомикс» поставляет керамические трубки, чехлы и соломку из различных керамических материалов, различного назначения и рассчитанные на разную температуру.

Для того, чтобы заказать керамические трубки, чехлы и соломку и уточнить цены, свяжитесь с нашими менеджерами. Телефоны Вы найдете в разделе Контакты.

По возрастанию температуры применения керамические трубки делятся:

Кварцевые трубки

Кварцевые трубки являются наиболее массовой продукцией из кварцевого стекла. Трубки и стержни получают методом горячего формования из газонаплавленного или электровакуумного кварцевого стекла.

Материал трубок отличается химической чистотой, жаропрочностью, устойчивостью к кристаллизации, имеет низкий коэффициент термического расширения (по сравнению с другими керамическими материалами). Кварцевое стекло устойчиво ко всем кислотам за исключением плавиковой и фосфорной. Электрическое сопротивление кварца значительно выше, чем лучших силикатных стекол, что позволяет делать из данного материала прекрасно работающие электроизоляторы.

Кварцевые трубки выдерживают резкий перепад температур - до 1000-1200°С и могут использоваться в кислых и нейтральных средах при температуре до 1250°, устойчивы к кристаллизации (при нагреве до 1200°С, в течении 2 часов) и при нагреве до 1000°С, с последующим охлаждением в проточной воде (15 теплосмен).

Кварцевые трубки применяются для сооружения трубопроводов в химической и пищевой промышленности, используют для транспортирования агрессивных жидкостей и газов.

Кварцевые трубки используются: для указания уровня жидкостей, как комплектующие в промышленном и котельном (как водомерные трубки котлов, водоуказательная трубка показывающая уровень жидкости) оборудовании, в металлургии и литье (пробы металла, кварцевые чехлы, термопары), в электронагревателях, химической (чехлы, колбы, воронки, лабораторная посуда, кварцевая труба) промышленности, в полупроводниковой и светотехнической промышленности (бактерицидные лампы, кварцевые лампы для солярия, ультрафиолетовые лампы), в печестроении уникальные характеристики кварцевого стекла нашли применение в глазках наблюдения, в защитных внешних кожухах на нагревательных элементах , в печах молирования и фьюзинга .

На основе кварцевых трубок строят уникальные трубчатые печи с вращением и наклоном трубы и газовым подводом и уникальные водородные трубчатые печи.

Контакты.

Муллитокремнеземистые трубки (МКР)

Трубки муллитокремнеземистые (МКР) , трубки муллитокремнеземистые с добавкой двуокиси циркония (МКРЦ) применяются для защиты термопар, термоэлектродов, в качестве поддержки спиральных нагревательных элементов в печах сопротивления с нагревательными элементами из фехрали, трубчатых печах в качестве муфеля, в качестве каналов потоков газа (для подвода и отвода газа).

Муллитокремнеземистые изделия трубки и чехлы МКР и муллитокремнеземистые с добавкой двуокиси циркония (МКРЦ) с температурой эксплуатации до 1350°С выпускаются с одним каналом диаметром от 1,5 до 103 мм, длиной от 20 до 2000 мм в зависимости от диаметра. Трубки могут быть изготовлены с одним закрытым концом.

Соломка МКР выпускается с 2 и 4 каналами, наружным диаметром от 3 до 9 мм, длиной до 800 мм.

Свойства материала МКР, изготавливаемые по ТУ 14-8-447-83 приведены в таблице.


Корундовые трубки, чехлы и соломка

Корундовые трубки предназначены для эксплуатации в высокотемпературных электрических печах сопротивления для поддержки и крепежа нагревательных элементов и в трубчатых печах в качестве трубы - муфеля. Чехлы из корунда используются в высокотемпературных печах в качестве защиты платиновых термопар. Соломка из корунда используется в качестве изолятора в платиновых и вольфрамовых термопарах.

Для того, чтобы уточнить цены и сделать заказ, необходимо связаться с нашими менеджерами. Их телефоны Вы найдете в разделе