Схемы подключения электродвигателя к электропитанию. Трехфазный двигатель в однофазной сети Схема подключения 3 фазного двигателя на 220

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке ), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

  1. Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

  1. Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя , в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

  1. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется :

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

10

Асинхронные трехфазные двигатели распространены в производстве и быту. Особенность заключается в том, что подсоединить их можно как к трехфазной, так и однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие существуют способы подключения двигателя 380 Вольт? Рассмотрим, как соединять статорные намотки в зависимости от количества фаз в электросети с использованием иллюстраций и обучающего видео.

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

  • треугольник,
  • звезда.

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

  • У статора есть 3 обмотки, у каждой из которых – по 1 началу и по 1 концу. Они выведены наружу в виде контактов. Поэтому для каждой намотки их 2. Будем обозначать: обмотка – О, конец – К, начало – Н. На схеме ниже 6 контактов, пронумерованных от 1 до 6. Для первой обмотки начало – 1, конец – 4. Согласно принятым обозначениям это НО1 и КО4. Для второй обмотки – НО2 и КО5, для третьей – НО3 и КО6.
  • В электросети 380 Вольт 3 фазы: A, B и C. Их условные обозначения оставим прежними.

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

При подключении асинхронного электродвигателя треугольником каждое начало соединяют с концом намотки последовательно. Выбор порядка номеров обмоток произвольный. Может получиться: НО1-КО5-НО2-КО6-НО3-КО2 .

Соединения звездой и треугольником выглядят так:

Содержание:

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами - звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех , устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой - к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Доморощенные «кулибины» используют для электромеханических поделок то, что попадется под руку. При выборе электродвигателя, обычно попадаются трехфазные асинхронные. Этот тип получил широкое распространение благодаря удачной конструкции, хорошей балансировке и экономичности.

Особенно это актуально в мощных промышленных агрегатах. За пределами частного дома или квартиры, проблем с трехфазным питанием нет. А как организовать подключение трехфазного двигателя к однофазной сети, если ваш счетчик имеет два провода?

Рассмотрим вариант штатного подключения

Трехфазный двигатель, имеет три обмотки под углом 120°. На контактную колодку выводится три пары контактов. Соединение можно организовать двумя способами:

Подключение по схеме «звезда» и «треугольник»

Каждая обмотка одним концом соединяется с двумя другими обмотками, образуя так называемую нейтраль. Оставшиеся концы соединяются с тремя фазами. Таким образом, на каждую пару обмоток подается 380 вольт:

В распределительной колодке, перемычки соединены соответственно, перепутать контакты невозможно. Понятия полярности в переменном токе нет, поэтому не имеет значения, какую фазу, на какой провод подавать.

При таком способе конец каждой обмотки соединяется со следующей, в результате получается замкнутый круг, точнее треугольник. На каждой обмотке присутствует напряжение 380 вольт.

Схема подключения:

Соответственно, на клемной колодке перемычки устанавливаются по-иному. Аналогично с первым вариантом, полярность отсутствует, как класс.


На каждую группу контактов, ток поступает в разный момент времени, следуя понятию «сдвиг фазы». Поэтому магнитное поле последовательно увлекает за собой ротор, создавая непрерывный крутящий момент. Так работает двигатель при «родном» для него трехфазном питании.

А если вам достался двигатель в отличном состоянии, а подключить его надо к однофазной сети? Не стоит расстраиваться, схема подключения трехфазного двигателя давно отработана инженерами. Мы поделимся с вами секретами нескольких популярных вариантов.

Подключение трехфазного двигателя к сети 220 вольт (одна фаза)

На первый взгляд, работа трехфазного мотора при подключении к одной фазе ничем не отличается от правильного включения. Ротор вращается, практически не теряя оборотов, никаких рывков и замедлений не наблюдается.

Однако достичь штатной мощности при таком питании невозможно. Это вынужденная потеря, ее никак не исправить, приходится с этим считаться. В зависимости от управляющей схемы, снижение мощности колеблется от 20% до 50%.

При этом электроэнергия расходуется так же, как будто вы используете всю мощь. Чтобы выбрать наиболее выгодный вариант, предлагаем ознакомиться с различными способами:

Конденсаторный способ включения

Поскольку нам необходимо обеспечить тот самый «сдвиг по фазе», используем природные способности конденсаторов. Два подводящих провода у нас имеются, их подключаем соответственно к обеим точкам штатной клемной колодки.

Остается третий контакт, на который заводится ток от одного из уже подключенных. Причем не напрямую (иначе двигатель не начнет вращение), а через конденсаторную схему.
Используется два конденсатора (их называют фазосдвигающими).

На приведенной схеме видно, что один конденсатор включен постоянно, а второй через не фиксируемую кнопку. Первый элемент рабочий, его задача имитировать штатный сдвиг фазы для третьей обмотки.

Вторая емкость предназначена для первого оборота ротора, дальше он крутится по инерции, каждый раз попадая между фальшивыми «фазами». Пусковой конденсатор нельзя оставлять включенным постоянно, поскольку он внесет сумятицу в относительно стройный ритм вращения.

Обратите внимание

Приведенная схема подключения трехфазного двигателя к однофазной сети является теоретической. Для реальной работы необходимо правильно рассчитать емкости обоих элементов, и подобрать тип конденсаторов.

Формула расчета рабочего «конденсатора»:

  • При подключении «звездой» С=(2800*I)/U;
  • При подключении «треугольником» С=(4800*I)/U;

Массовым применением зарекомендовали себя асинхронные трёхфазные электродвигатели переменного тока 380 вольт. Благодаря надёжной работе и минимальным требованиям по техническому обслуживанию двигатели нашли применение в быту при изменении стандартной схемы включения. Осуществить подключение трёхфазного двигателя к однофазной сети могут только те, кто в совершенстве владеет знаниями в области электротехники и электромеханики.

Асинхронные трёхфазные двигатели

Асинхронные электродвигатели механически состоят из двух частей: статора и ротора. Статор является неподвижной частью, которая состоит из сердечника набранного из электротехнической стали, обладающей высокими магнитными свойствами.

Сердечник набирается из отдельных листов для предотвращения возникновения вихревых токов Фуко, которые могут возникнуть в переменном магнитном поле проводника.

Каждая из пластин отдельно изолируется специальным лаком. Пазы сердечника оснащаются медным эмалированным проводом, состоящим из трёх обмоток, которые располагаются, одна от другой с угловым расстоянием равным 120 градусов.

Свободно вращающая подвижная часть, называемая, ротор помещается внутрь сердечника на расстояние друг от друга не менее 0,5 мм до 3 мм.

Стандартное подключение

Подключение трёхфазного двигателя к трёхфазной сети осуществляется по схеме соединения типа «Звезда». При таком соединении к каждой из фаз по отдельности приложено напряжение 220 В относительно центральной общей точки «Нуля», а между каждой из фаз величина линейного напряжения составит 380 В.

Преимущество такого способа подключения:

  • Малые пусковые токи.
  • Мягкий старт.

Второй способ подключения «Треугольник». Соединение обмоток подключено последовательно, по кругу. Начало первой обмотки (А) соединяют с концом третьей ©, а конец первой (А) соединён с началом второй (В), конец второй обмотки (В) соединён с началом третьей ©. Основным недостатком такого подключения в трёхфазной сети 380 В, является:

  • Повышенный пусковой ток превышающий номинальный в 7-8 раз, вызывающий аварийную перегрузку сети.
  • Повышенный протекающий ток в рабочем состоянии.

При подключении треугольником мощность электродвигателя становится выше, чем при соединении звездой. В автоматизированных системах запуск и разгон двигателя проводят в режиме звезды, доводя скорость до номинальных оборотов, после чего производится автопереход в режим треугольника.

Нестандартная схема

Подключить трехфазный двигатель на 220 вольт можно путём внесения изменений в стандартную схему включения, что уменьшит его паспортную мощность на 30%. Подключение электродвигателя 380 В на 220 В через конденсатор существенно отразится на его характеристиках при практическом применении конденсаторов, увеличивая ёмкостный сдвиг фаз, при простой реализации и меньших потерях.

Для сдвига фазы конденсатор можно подключить параллельно к одной из трёх фаз двигателя. Включение обмоток по схеме треугольника выдаёт полезной мощности больше, чем включение «Звезда» . Для более мощных двигателей схема подключения трёхфазного электродвигателя на 220 В предусматривает применение в своих цепях пускового конденсатора, включенного на короткий срок действия. После старта и набора оборотов пусковой конденсатор отключается, а рабочий остаётся подключенным.

Пусковой конденсатор в схеме подключен параллельно основному. Запустить электродвигатель можно при помощи пусковой кнопки. Ёмкость пускового конденсатора в 2-3 раза выше, чем у рабочего и заряд на нём может оставаться длительное время. В целях безопасности в схему вводят резисторы с сопротивлением порядка 300 кОм и не выше 1 МОм, мощностью 2-3 Вт, необходимые для разряда конденсаторов.

Асинхронный двигатель при подключении на 220 В требует необходимой точности с подбором ёмкостей пускового и основного конденсатора, обеспечивающие его уверенный запуск и надёжную работу. При недостаточной ёмкости мощность электродвигателя будет недостаточной, что отразится на качестве его работы, а при избыточной возрастают протекающие через обмотки токи, вызывающие перегрев обмоток, создавая межвитковое замыкание и выходом из строя электродвигателя.

Как подобрать ёмкости конденсаторов

Чтобы не вдаваться в подробности инженерного расчёта, используя громоздкие формулы, можно использовать простой и понятный расчёт ёмкости конденсатора, исходя из условия, что на каждые 100 Вт принимается 7 мкф. Если двигатель имеет мощность 1 киловатт (1000 Вт), то рассчитывается 7 умноженное на 10, в итоге получается 70 мкф.

Полученная ёмкость при расчёте не всегда может совпадать с табличными значениями выпускаемых конденсаторов. Для получения необходимой ёмкости нужно соединить конденсаторы параллельно между собой для суммарного значения расчётной ёмкости. Пусковые конденсаторы имеют сокращённое время работы только при пуске, что даёт возможность использования недорогих ёмкостей, специально предназначенных для этих целей.

Если запуск двигателя производится без нагрузки, то необходимость в пусковом конденсаторе отпадает. При использовании нагрузки требуется в обязательном порядке использовать пусковой конденсатор.

Использовать можно плёночные конденсаторы или металлобумажные (МБГО, МБГЧ, К78−17, К75−12, БГТ и другие). Запас допустимого напряжения должен на 30% превышать напряжение питающей сети, что отражено на корпусе конденсатора.

Подключение электродвигателя 380 В на 220 В через конденсатор позволяет также изменить направление вращения электродвигателя.

Реверсное переключение можно производить при помощи магнитного пускателя. Необходимо на одну из обмоток (А) подать питание 220 В (фаза и ноль), а две другие обмотки (В и С), соединённых последовательно, подключить параллельно обмотке (А). К средней точке между обмотками (В и С) включают вывод конденсатора, а другой его вывод подключен либо к нолю, либо к фазе, что меняет направление вращения асинхронного электродвигателя.